Pointwise forecast and prediction intervals in electricity demand and price

Paula Raña, Juan Vilar y Germán Aneiros

Departamento de Matemáticas, Universidade da Coruña

Machine Learning Workhop Galicia 2016 27 October 2016

《曰》 《圖》 《圖》 《圖》

2 Prediction of electricity demand and price

Prediction Intervals in Functional Regression

Spanish Electricity Market

"Mercado Ibérico de la Electricidad" (MIBEL)

- Market operator: "Operador del Mercado Ibérico Español" (OMIE)
- System operator: "Red Eléctrica de España" (REE)

Daily market

24 hourly offers for the quantity of power (measured in Mega Watts per hour, MWh) and its price (measured in \in /MWh)

Functional time series

Daily curves of electricity demand or price along 2012: $\{\chi_i\}_{i=1}^{365}$ Discretized curves: $\chi_i(t_j), j = 1, ..., 24$. Functional time series: $\{\chi_i\}_{i=1}^n$

< ロ > < 同 > < 三 > < 三 >

Electricity demand

Figure : Electricity demand in 2012.

Electricity price

Figure : Electricity price in 2012.

Temperature

Daily maximum temperature in Spain Non-linear relationship \longrightarrow U-shaped Cumulative daily demand \sim Maximum daily temperature Comfort zone (20.24) with no effect.

Temperature-derived functions

Heating/Cooling Degree Days

HDD/CDD: Measurement of the amount of energy needed to heat/cool a building.

$$HDD(t) = \max\{20 - T(t), 0\}$$

 $CDD(t) = \max\{T(t) - 24, 0\}$

Wind Power Production

Wind Power

2 Prediction of electricity demand and price

Prediction Intervals in Functional Regression

Comparative study of prediction methods applied to electricity data: demand and price.

Extension of:

 Vilar JM, Cao R, Aneiros G. (2012), Forecasting next-day electricity demand and price using nonparametric functional methods, *International Journal of Electrical Power and Energy Systems*, 39: 48–55.

Functional regression methods: functional response and external covariates. Combined predictions.

 Aneiros, G., Vilar, J., and Raña, P. (2016) Short-term forecast of daily curves of electricity demand and price. International Journal of Electrical Power and Energy Systems, 80, 96–108. Prediction of electricity demand and price

Comparison methods

Naive

Demand/price in one day = demand/price in the previous day of the same class.

RFPCA

Hyndman and Ullah (2007), available at ftsa package in R.

ARIMA

24 separate univariate time series, one for each hour of the day.

Prediction of electricity demand and price

Functional Nonparametric model with functional response

- Functional response variable: χ_{i+1} .
- Functional explanatory variable: χ_i .

$$\mathcal{I}_0 = \{N - 364, N - 363, \dots, N - 1, N\},$$

 $\mathcal{I}_{Sat} = \{j \in \mathcal{I}_0, \text{ such that } \chi_j \text{ is a Saturday }\}$

Model

$$\begin{split} \boldsymbol{\chi}_{i+1} &= m\left(\boldsymbol{\chi}_{i}\right) + \varepsilon_{i+1}, \ i+1 \in \mathcal{I}_{Sat} \\ \widehat{\boldsymbol{\chi}}_{N+1} &= \widehat{m}_{h}^{FNP}\left(\boldsymbol{\chi}_{N}\right) \end{split}$$

3 models: Weekdays, Saturday, Sunday.

FNP model

m will be estimated using a Nadaraya-Watson type estimator:

$$\widehat{m}_{h}^{FNP}\left(\boldsymbol{\chi}_{N}
ight) = \sum_{i \ /i+1 \in \mathcal{I}_{Sat}} w_{h}(\boldsymbol{\chi}_{N}, \boldsymbol{\chi}_{i}) \boldsymbol{\chi}_{i+1}$$

$$w_h(\boldsymbol{\chi}_N,\boldsymbol{\chi}_i) = \frac{K\left(d(\boldsymbol{\chi}_N,\boldsymbol{\chi}_i)/h\right)}{\sum_{j \ /j+1 \in \mathcal{I}_{Sat}} K\left(d(\boldsymbol{\chi}_N,\boldsymbol{\chi}_j)/h\right)},$$

K is a kernel function, h is a smoothing parameter and d is a semimetric.

FNP model with scalar response

- Scalar response variable: $\chi_{i+1}(j)$, $j=1,\ldots,24$.
- Functional explanatory variable: χ_i .

24 models

$$egin{aligned} &\chi_{i+1}(j) = m\left(\chi_i
ight) + arepsilon_{i+1}, \ i+1 \in \mathcal{I}_{\mathcal{S}at}, j=1,\ldots,24 \ & \widehat{\chi}_{N+1}(j) = \widehat{m}_h^{FNP}\left(\chi_N
ight), j=1,\ldots,24 \end{aligned}$$

72 models: 24 imes Weekdays, Saturday, Sunday.

Semi-functional partial linear model

- Functional response variable: χ_{i+1} .
- Functional explanatory variable: χ_i .
- Exogenous scalar variables: $\boldsymbol{X}_{i+1}^T = (x_{i+1 \ 1}, \dots, x_{i+1 \ p}).$

Model

$$\begin{split} \boldsymbol{\chi}_{i+1} &= \boldsymbol{X}_{i+1}^{T}\boldsymbol{\beta} + m\left(\boldsymbol{\chi}_{i}\right) + \varepsilon_{i+1}, \ i+1 \in \mathcal{I}_{Sat} \\ \widehat{\boldsymbol{\chi}}_{N+1} &= \boldsymbol{X}_{N+1}^{T}\widehat{\boldsymbol{\beta}} + \widehat{m}\left(\boldsymbol{\chi}_{N}\right) \end{split}$$

 \sim

SFPL model

$$\mathbf{X}_h = (\mathbf{I} - \mathbf{W}_h)\mathbf{X}$$
 and $\widetilde{\boldsymbol{\chi}}_h = (\mathbf{I} - \mathbf{W}_h)\boldsymbol{\chi}$
where $\mathbf{W}_h = (w_h(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j))_{i+1, j+1 \in \mathcal{I}_{Sat}}, \mathbf{X} = (x_{i+1j})_{\substack{i+1 \in \mathcal{I}_{Sat} \\ 1 \leq j \leq p}}$ and
 $\boldsymbol{\chi} = (\boldsymbol{\chi}_{i+1})_{i+1 \in \mathcal{I}_{Sat}}$

The estimator for β is defined by:

$$\widehat{\boldsymbol{\beta}}_{h} = (\widetilde{\mathbf{X}}_{h}^{T} \widetilde{\mathbf{X}}_{h})^{-1} \widetilde{\mathbf{X}}_{h}^{T} \widetilde{\boldsymbol{\chi}}_{h}$$

and finally

$$\widehat{m}_{h}^{SFPL}\left(\boldsymbol{\chi}\right) = \sum_{i+1 \in \mathcal{I}_{Sat}} w_{h}(\boldsymbol{\chi}, \boldsymbol{\chi}_{i}) \left(\boldsymbol{\chi}_{i+1} - \boldsymbol{X}_{i+1}^{T} \widehat{\boldsymbol{\beta}}_{h}\right)$$

SFPL model

SFPL1: 3 models for Weekdays, Saturday and Sunday

Demand $\boldsymbol{X} = (x_1, x_2)^T = (HDD, CDD)^T$

Price

$$X = (x_1, x_2)^T = (D, WPP)^T$$

SFPL2: 1 model

$$x_3 = I_{Saturday}, x_4 = I_{Sunday}$$
 and $x_5 = I_{Monday}$ $oldsymbol{X} = (x_1, x_2, x_3, x_4, x_5)^T$

SFPL model with scalar response

- Scalar response variable: $\chi_{i+1}(j)$, $j=1,\ldots,24$.
- Functional explanatory variable: χ_i .
- Exogenous scalar variables: $\boldsymbol{X}_{i+1}^T = (x_{i+1 \ 1}, \dots, x_{i+1 \ p}).$

24 models

$$\chi_{i+1}(j) = \boldsymbol{X}_{i+1}^{T}\boldsymbol{\beta} + m(\boldsymbol{\chi}_{i}) + \varepsilon_{i+1}, \ i+1 \in \mathcal{I}_{Sat}, j = 1, \dots, 24.$$
$$\widehat{\chi}_{N+1}(j) = \boldsymbol{X}_{N+1}^{T}\widehat{\boldsymbol{\beta}} + \widehat{m}(\boldsymbol{\chi}_{N}), j = 1, \dots, 24.$$

Combined methods

Combinations of the methods to forecast curves.

Combined forecasting 1

Average all the individual methods.

Combined forecasting 2

For each group of days (weekdays, Saturday and Sunday), average the two best predictors.

Error measurement

Demand errors: Integrated absolute percentage error (IAPE)

$$IAPE_{N+1} = rac{1}{24} \int_{0}^{24} APE_{N+1}(t) dt pprox rac{1}{24} \sum_{j=1}^{24} APE_{N+1}(j),$$

where

$$APE_{N+1}(t) = 100 imes \left| rac{\widehat{\chi}_{N+1}(t) - \chi_{N+1}(t)}{\chi_{N+1}(t)}
ight|$$

Price errors: Integrated absolute error (IAE)

$$IAE_{N+1} = \frac{1}{24} \int_0^{24} AE_{N+1}(t) dt \approx \frac{1}{24} \sum_{j=1}^{24} AE_{N+1}(j),$$

where

$$AE_{N+1}(t) = \left|\widehat{\chi}_{N+1}(t) - \chi_{N+1}(t)\right|.$$

•

Table : Mean of the IAPE for the electricity demand curves.

	Method	2012
Functional	Naïve	6.39
	RFPCA	6.00
	FNP	6.05
	SFPL1	5.78
	SFPL2	6.03
Combined	CF1	5.46
	CF2	5.40
Scalar	ARIMA	5.90
	FNP sc	6.20
	SFPL1 sc	5.97

문▶ 문

Table : Mean of the IAE for the electricity price curves.

	Method	2012
Functional	Naïve	6.83
	RFPCA	5.94
	FNP	6.36
	SFPL1	5.15
	SFPL2	5.00
Combined	CF1	5.11
	CF2	4.94
Scalar	ARIMA	6.27
	FNP sc	6.41
	SFPL1 sc	5.22

문▶ 문

2 Prediction of electricity demand and price

3 Prediction Intervals in Functional Regression

Scalar response

$$Y = m(\chi) + \varepsilon$$

Confidence Interval

$$\mathbb{E}(Y|\boldsymbol{\chi}=\boldsymbol{\chi})=m(\boldsymbol{\chi})$$

Prediction Interval

$$Y/\chi = m(\chi) + \varepsilon$$

- Asymptotic theory
- Bootstrap

Prediction Intervals in Functional Regression

Prediction Interval in FNP model

$$Y/\chi = m(\chi) + \varepsilon = \widehat{m}_h(\chi) + m(\chi) - \widehat{m}_h(\chi) + \varepsilon.$$

where we can approximate

•
$$m(\chi) - \widehat{m}_h(\chi)$$
 by $\widehat{m}_b(\chi) - \widehat{m}^*_{hb}(\chi)$
• ε by $\widetilde{\varepsilon}$

Bootstrap $(1 - \alpha)$ -prediction intervals for Y/χ

$$I_{\chi,1-\alpha}^* = (\widehat{m}_h(\chi) + q_{\alpha/2}^*(\chi), \widehat{m}_h(\chi) + q_{1-\alpha/2}^*(\chi))$$

Prediction Intervals in Functional Regression

Prediction Interval in SFPL model

$$Y/\{\boldsymbol{X},\chi\} = \boldsymbol{X}^{T}\boldsymbol{\beta} + \boldsymbol{m}(\chi) + \varepsilon = \\ \boldsymbol{X}^{T}\boldsymbol{\beta}_{h} + \boldsymbol{X}^{T}(\boldsymbol{\beta} - \boldsymbol{\beta}_{h}) + \boldsymbol{\hat{m}}_{h}(\chi) + \boldsymbol{m}(\chi) - \boldsymbol{\hat{m}}_{h}(\chi) + \varepsilon,$$

where we can approximate

•
$$\beta - \hat{\beta}_h$$
 by $\hat{\beta}_b - \hat{\beta}_b^*$
• $m(\chi) - \hat{m}_h(\chi)$ by $\hat{m}_b(\chi) - \hat{m}_{hb}^*(\chi)$
• ε by $\tilde{\varepsilon}$

Bootstrap $(1 - \alpha)$ -prediction intervals for Y/χ

$$I_{\boldsymbol{X},\chi,1-\alpha}^{*} = (\boldsymbol{X}^{T}\widehat{\boldsymbol{\beta}}_{h} + \widehat{\boldsymbol{m}}_{h}(\chi) + \boldsymbol{q}_{\alpha/2}^{*}(\boldsymbol{X},\chi), \boldsymbol{X}^{T}\widehat{\boldsymbol{\beta}}_{h} + \widehat{\boldsymbol{m}}_{h}(\chi) + \boldsymbol{q}_{1-\alpha/2}^{*}(\boldsymbol{X},\chi))$$

Electricity demand

Dataset: workdays of the second quarter of the year 2012. Predict one day (24 hours).

FNP model

$$\chi_{i+1}(t) = m_t(\chi_i) + \varepsilon_{i,t} \ (t = 1, ..., 24, \ i = 1, ..., n);$$

SFPL model

$$\boldsymbol{\chi}_{i+1}(t) = \boldsymbol{X}_i^T \boldsymbol{\beta} + m_t(\boldsymbol{\chi}_i) + \varepsilon_{i,t} \ (t = 1, \dots, 24, \ i = 1, \dots, n);$$

Temperature covariates: $\boldsymbol{X}_i = (X_{i1}, X_{i2})^T = (HDD_i, CDD_i)^T$

Prediction Intervals in Functional Regression

Prediction intervals for electricity demand

Figure : Bootstrap prediction intervals for the electricity demand. Left: FNP, right: SFPL.

Prediction density

Figure : Prediction density for the electricity demand using the FNP (left) or SFPL (right), along June 29, 2012.

Software

R

Packages:

- fda.usc
- npfda routines
- ftsa
- TSA

Execution time

- FNP: fast
- SFPL: slow
 - predict one day (functional response): 30'
 - predict one hour (scalar response):6' \Rightarrow 24 hours: 2.5h.

References

- Aneiros, G., Vilar, J., and Raña, P. (2016), Short-term forecast of daily curves of electricity demand and price, *International Journal of Electrical Power and Energy Systems*, 80, 96–108.
- Vilar JM, Cao R, Aneiros G. (2012), Forecasting next-day electricity demand and price using nonparametric functional methods, *Electr Power Energy Syst*, 39: 48–55.
- Raña, P., Aneiros, G., Vilar, J. and Vieu, P. (2016) Bootstrap confidence intervals in functional nonparametric regression under dependence. *Electronic Journal of Statistics*, 10(2), 1973–1999.

Pointwise forecast and prediction intervals in electricity demand and price

Paula Raña, Juan Vilar y Germán Aneiros

Departamento de Matemáticas, Universidade da Coruña

Machine Learning Workhop Galicia 2016 27 October 2016

《曰》 《圖》 《圖》 《圖》