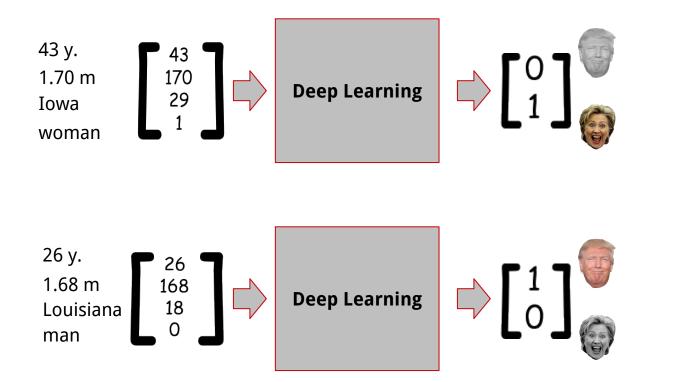
Using Deep Neural Networks for Discriminative Feature Localization

Javier Sánchez Rois Daniel González Jiménez

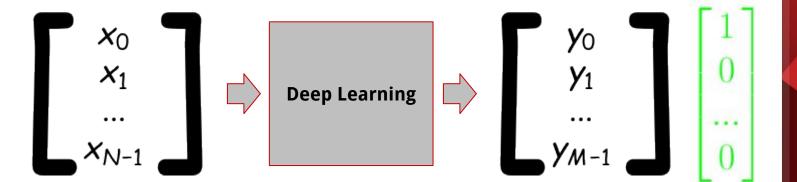
Àgata Lapedriza García

Universitat Oberta de Catalunya

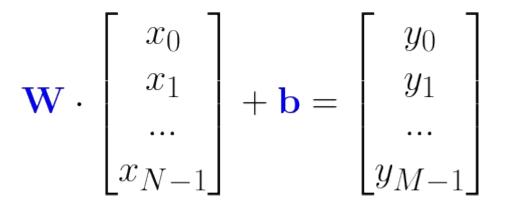
Deep {Neural Nets, Learning}

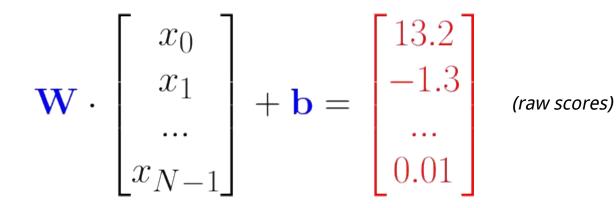


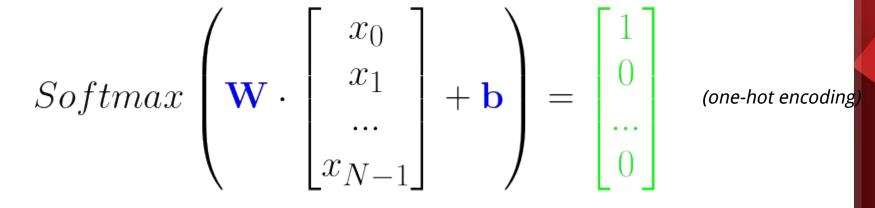
n

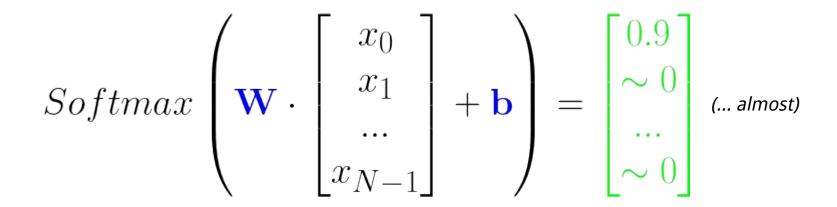


A Linear Model



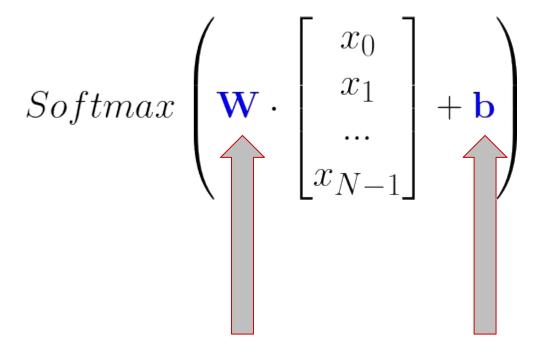






Logistic Regression

Gradiant

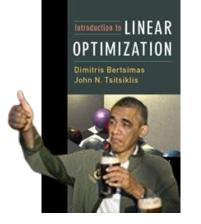


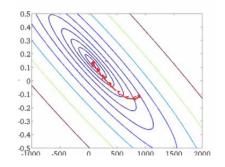
$$Error_{i} = f(\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0.3\\0.6\\0.05\\0.05\end{bmatrix})$$

$E_i = CE(\mathbf{l}_i, Softmax(\mathbf{W} \cdot \mathbf{x}_i + \mathbf{b}))$

0

 $\min_{W,b} \sum_{i} E_i$



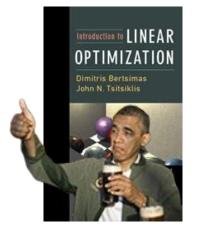


Gradient Descent

 $W_{i+1} \leftarrow W_i - \alpha \frac{\partial E}{\partial W}$

nt.org

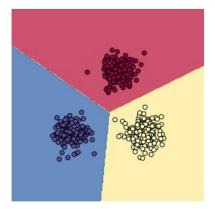
Linear Models: Pros



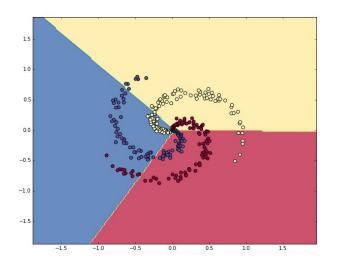
Easy to solve for minimal loss

GPUs for optimal implementation

Linear Models: Cons

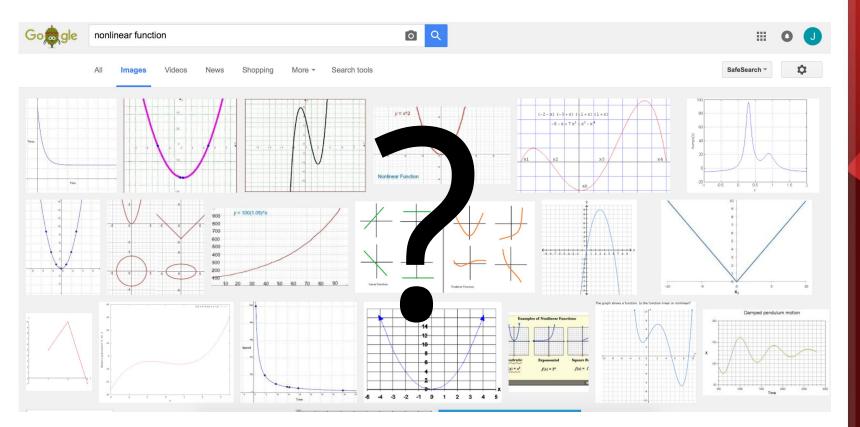


OK for *easy* scenarios



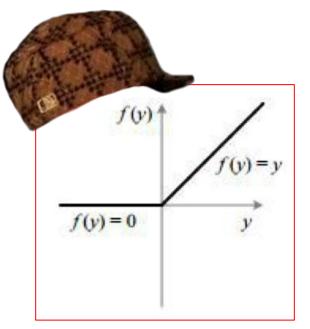
Underfitting complex data

We need to go *nonlinear*



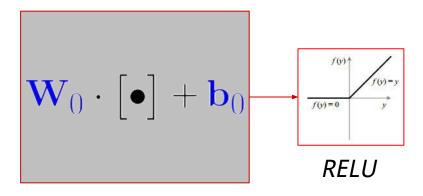
n

RELU: rectified linear unit



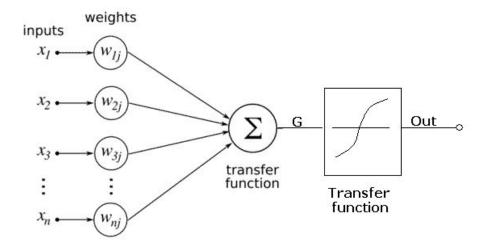
(scumbag nonlinear function)

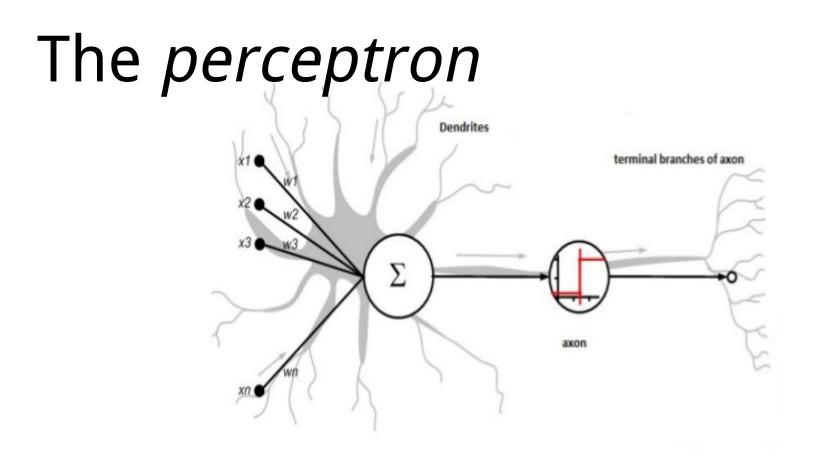
The *perceptron*



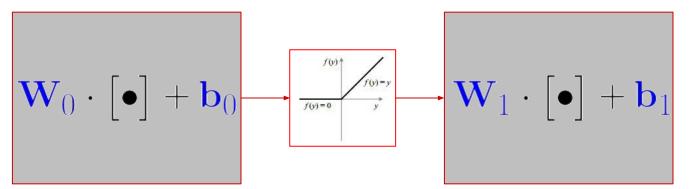
Fully-connected layer

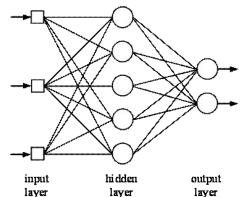
The *perceptron*

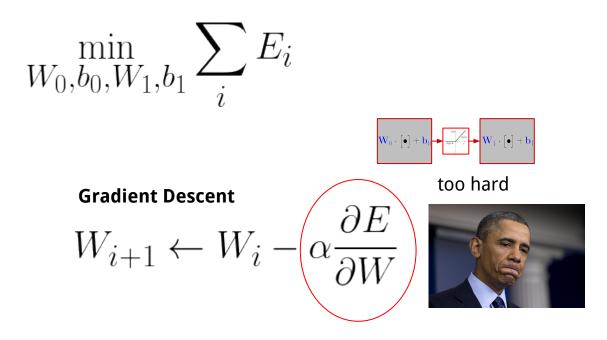




The multilayer perceptron

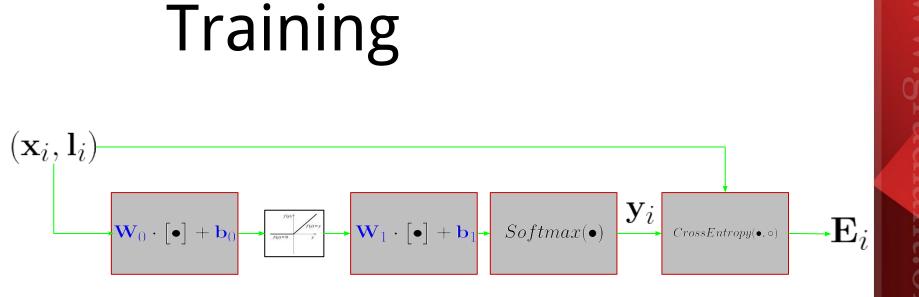




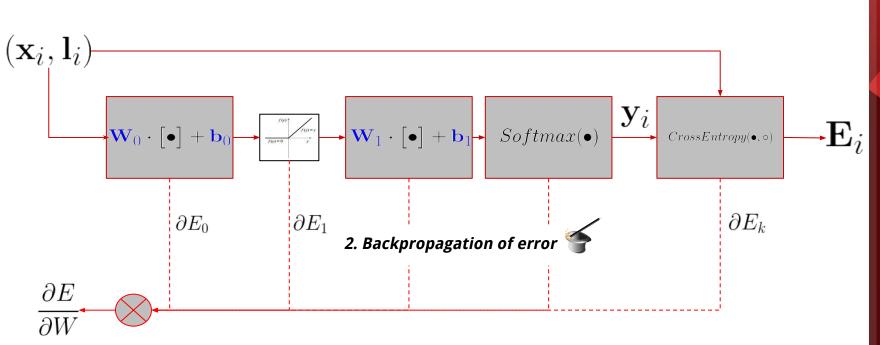


Backpropagation = Rule of Chain

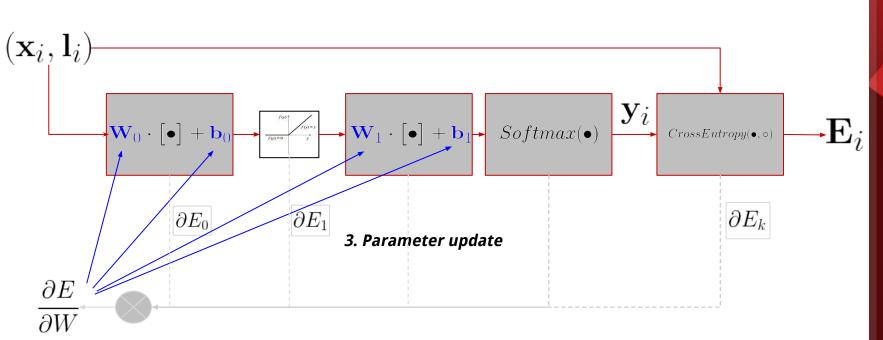
$$\frac{\partial}{\partial W} Error\left(\underbrace{\mathbf{w}_{\mathbf{w}} \left[\mathbf{v}_{\mathbf{w}} \right] + \mathbf{w}_{\mathbf{w}} \left[\mathbf{w}_{\mathbf{w}} \right] + \mathbf{w}_{\mathbf{$$



1. Forward Propagation



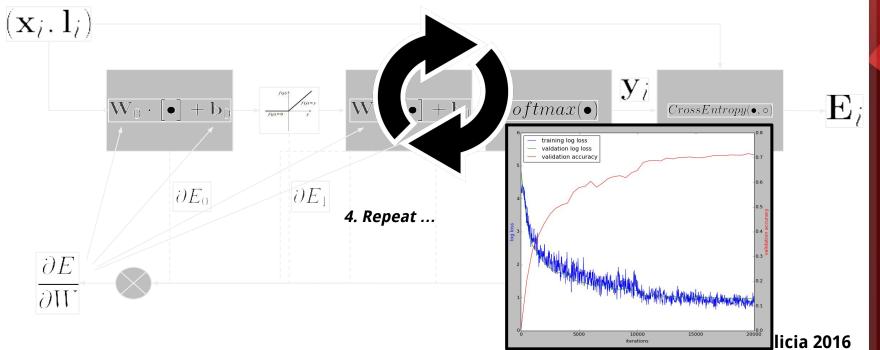
Training



Training

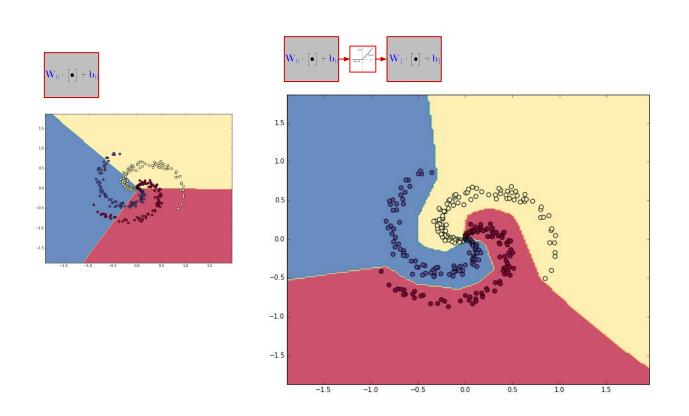
Machine Learning Workhop Galicia 2016

0



Bul

Gradiant



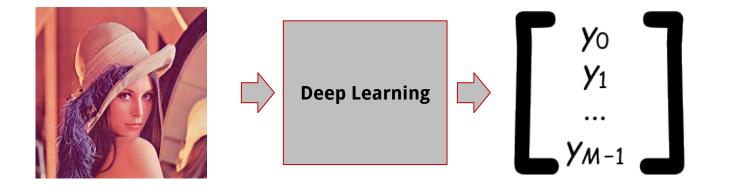
Andrej Karpathy - CS231n: Convolutional Neural Networks for Visual Recognition.

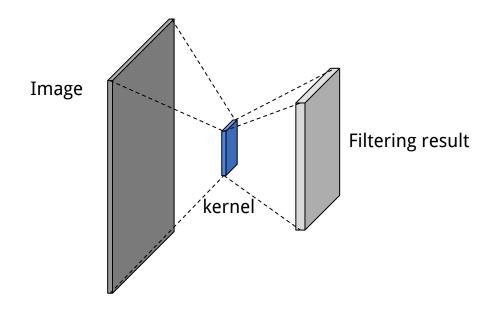
Gradiant

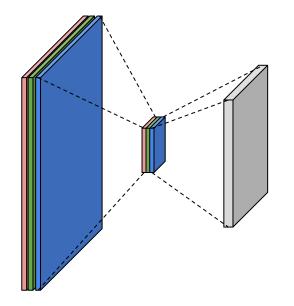
Neural Nets are machine learning network characterized by

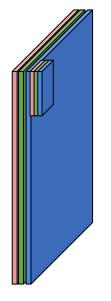
- Use of **nonlinear** models
- Backpropagation algorithm for training

DNN'ing images

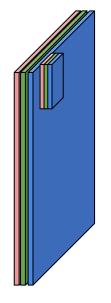


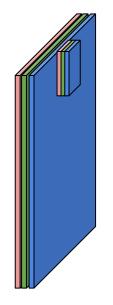


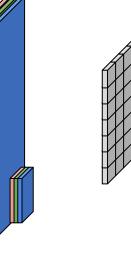


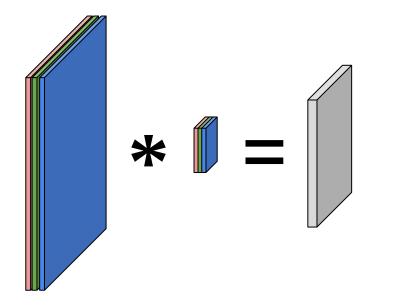


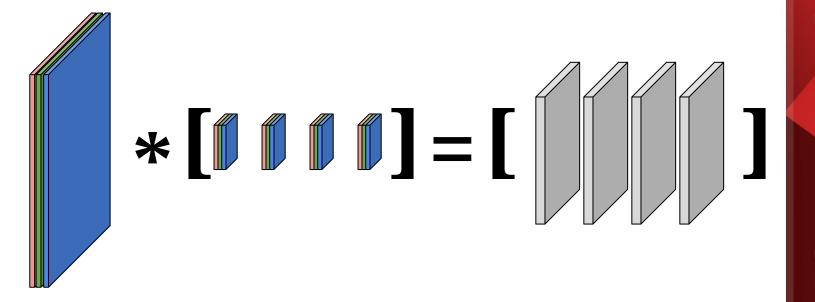
ſ

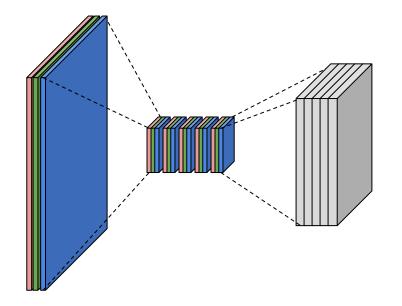


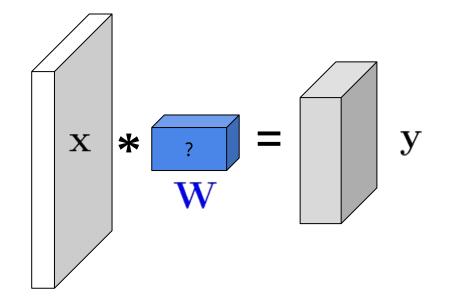


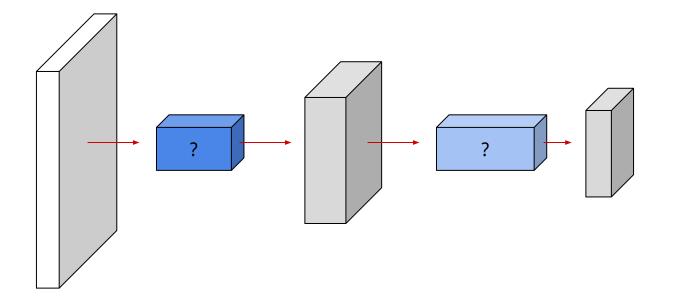


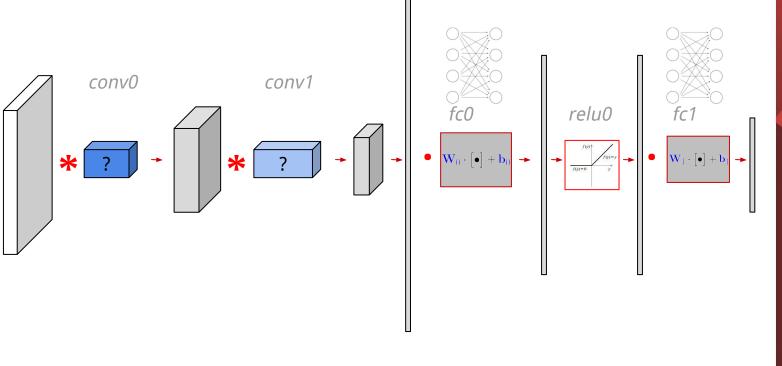










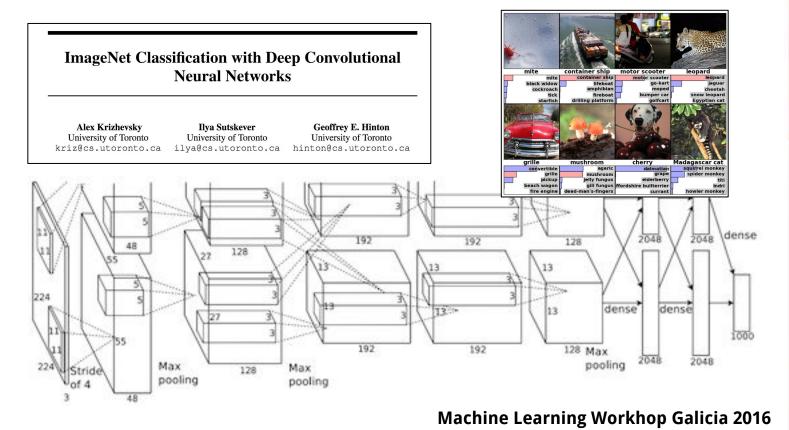


Network Architecture

How many convolutional layers? How many fully connected layers? Parameters?

• • •

CNN architectures: AlexNet (2012)



CNN architectures: GoogLeNet (2014) **Going Deeper with Convolutions** Christian Szegedy¹, Wei Liu², Yangqing Jia¹, Pierre Sermanet¹, Scott Reed³, Dragomir Anguelov¹, Dumitru Erhan¹, Vincent Vanhoucke¹, Andrew Rabinovich⁴ ¹Google Inc. ²University of North Carolina, Chapel Hill ³University of Michigan, Ann Arbor ⁴Magic Leap Inc. ¹{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com ²wliu@cs.unc.edu, ³reedscott@umich.edu, ⁴arabinovich@magicleap.com Filter concatenation 1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

Caffe

So what is Caffe?

- Pure C++ / CUDA architecture for deep learning
 - command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU
 - o Caffe::set_mode(Caffe::GPU);

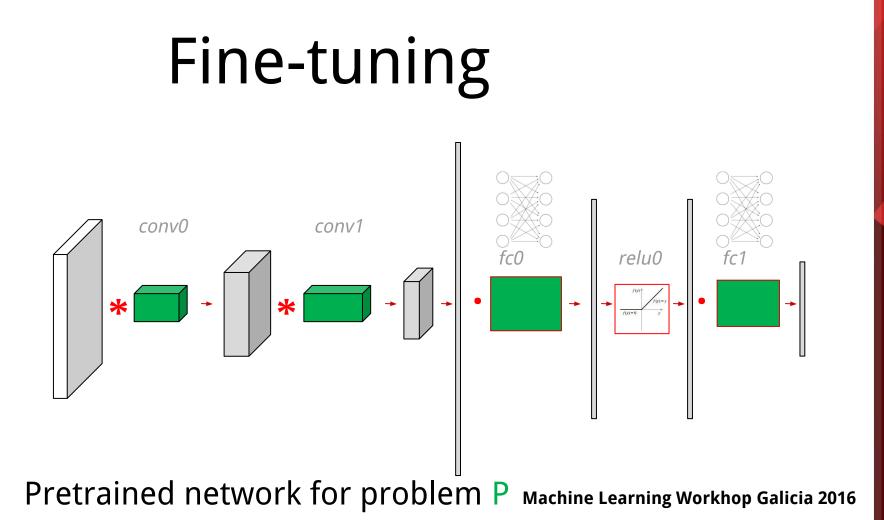
Caffe Model Zoo

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
<pre>convolution_param {</pre>
num_output: 96
kernel_size: 11
stride: 4
<pre>weight_filler {</pre>
type: "gaussian"
std: 0.01
}
<pre>bias_filler {</pre>
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"

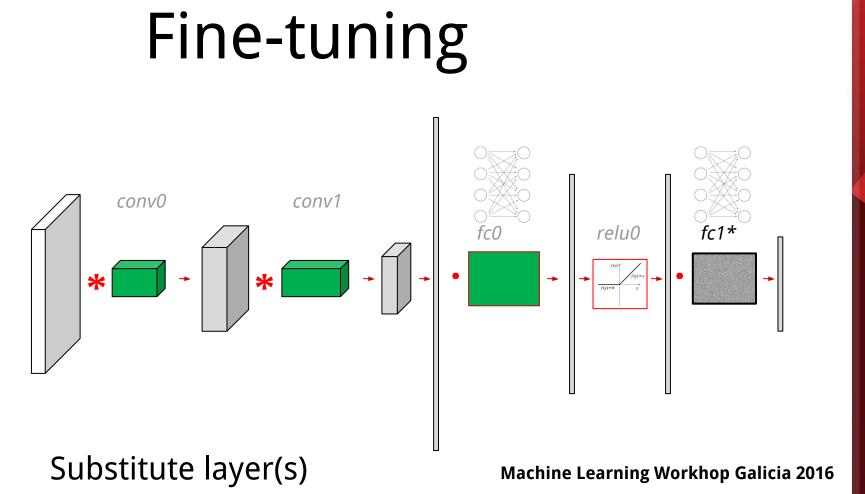
Discriminative Feature Localization

Fine-tuning

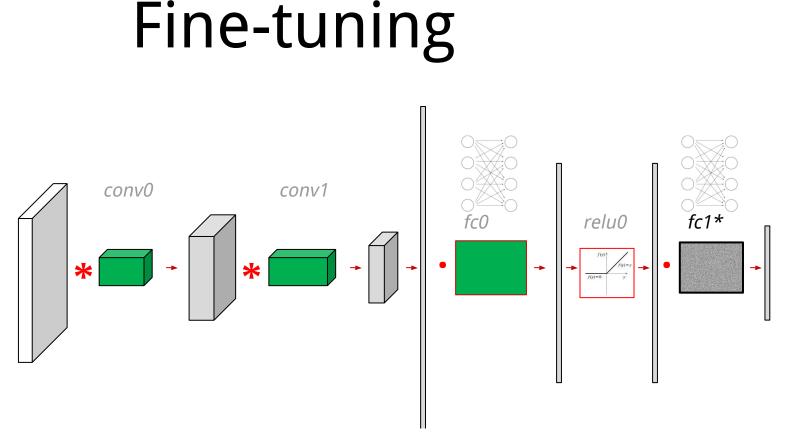
Adjusting the parameters of an existing, pre-trained network to solve a different problem with "few" images from the new problem domain.



Gradiant

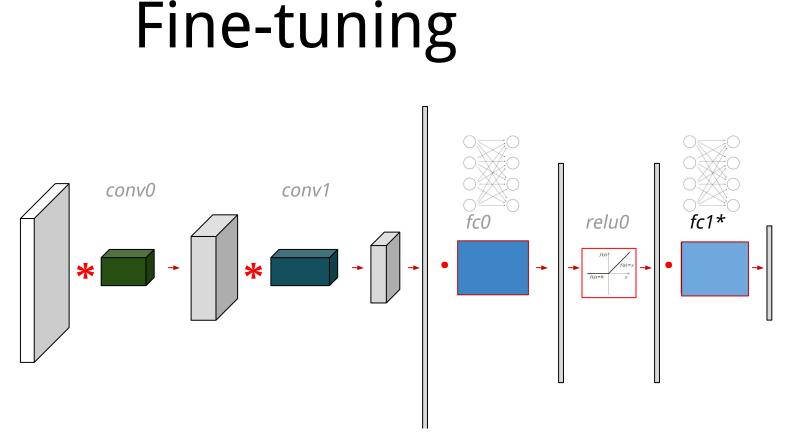


Gradiant



Train with new samples for problem **Q**

Learning Workhop Galicia 2016



Train with new samples for problem **Q**

ing Workhop Galicia 2016

Image Semantics

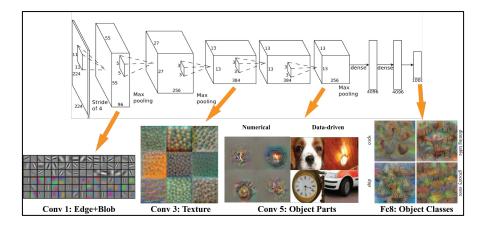
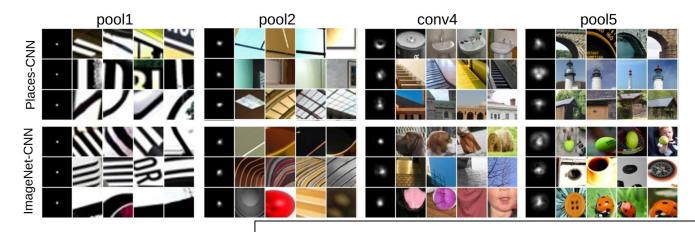


Image Semantics



Published as a conference paper at ICLR 2015

OBJECT DETECTORS EMERGE IN DEEP SCENE CNNS

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Computer Science and Artificial Intelligence Laboratory, MIT {bolei,khosla,agata,oliva,torralba}@mit.edu

6

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Computer Science and Artificial Intelligence Laboratory, MIT {bzhou, khosla, agata, oliva, torralba}@csail.mit.edu

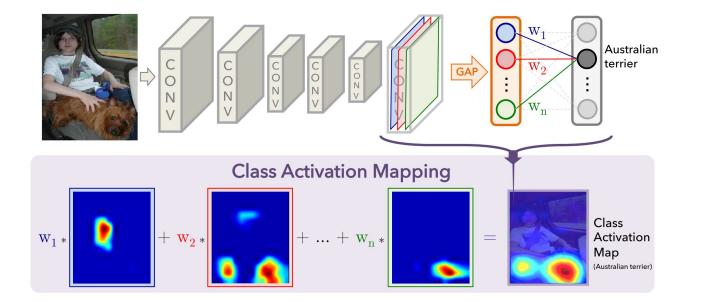
Abstract

In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5



Figure 1. A simple modification of the global average pool-

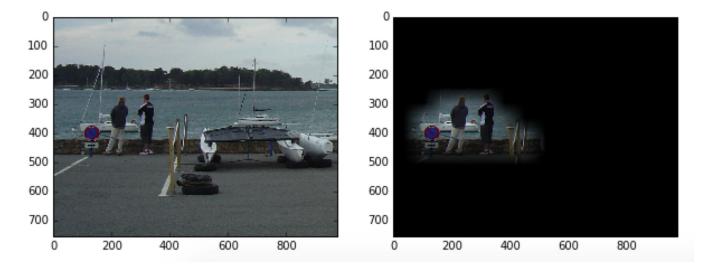
nt.org



Experiment: Localization using CAM

2 classes : {person, not person}

Image classified as 1 with probability 0.999978 Class no. 1 Activation Mapping



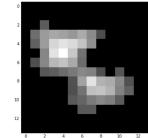
Machine Learning Workhop Galicia 2016

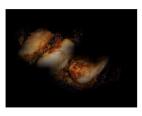
Gradiant

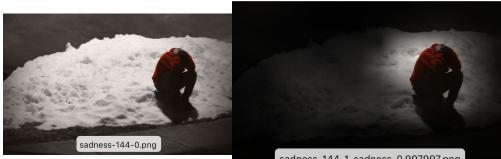
Experiment: Sentiment Analysis + CAM

6 classes : {anger, disgust, fear, joy, sadness, surprise}

classified as "disgust" (0.999673)

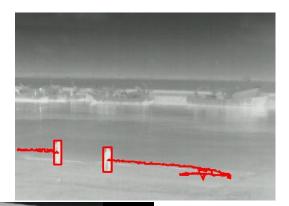






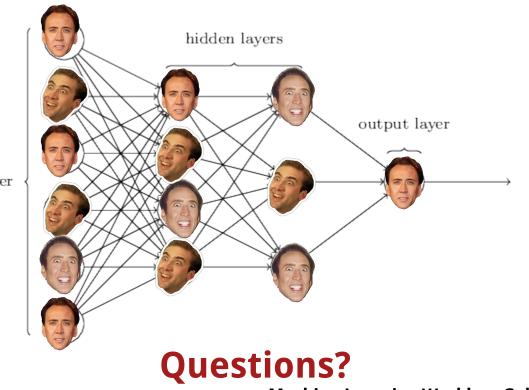
sadness-144-1-sadness-0.997997.png

New Challenges: Stable Object Detection



Snapshot Spectral Imager for IR Surveillance

THANK YOU!



input layer {

Gradiant

it.org