Aplicación de técnicas de selección de características para la mejora de los sistemas automáticos de detección de vertidos de hidrocarburos

David Mera¹ Veronica Bolon-Canedo² J.M Cotos¹ Amparo Alonso-Betanzos²

¹Centro Singular de Investigación en Tecnoloxías da Información Universidade de Santiago de Compostela

²Dept. de Computación, Universidade da Coruña

Machine Learning Workhop Galicia 2016

Centro Singular de Investigación en Tecnoloxías da Información

Index

Sentinazos Introduction Automatic detection system

Feature selection Main objective Methodology

Results

Computational requirements

Conclusions

Machine Learning Workhop Galicia 2016

Index

Sentinazos Introduction Automatic detection system

- 2 Feature selection Main objective Methodology Results
- 3 Computational requirements
- 4 Conclusions

Machine Learning Workhop Galicia 2016

- The international trade is mainly supported by maritime transport
- The intensive traffic sails along the Exclusive Economic Zones (EEZ) of countries and generates important pollution problems
- Only the 7 % of oil spills come from catastrophes like tanker and oil platform accidents

- An effective monitoring system is crucial to ensure a proper response to environmental emergencies
- The Synthetic Aperture Radar has proved to be an appropriate tool for discovering oil spills

Sentinazos Automatic detection system

- Segmentation: oil spill candidates are highlighted from the image background
- Feature extraction: segmented spots are analyzed to get their feature vectors
- Classification: each feature vector is labeled either as look-alike or oil spill

Sentinazos Automatic detection system

- Dark spot segmentation
 - Typically, hundreds of candidates are segmented
- Feature selection/extraction
 - Features should have a good discriminatory power
 - Computationally intensive phase. Each candidate is independently examined
 - A concise and relevant set of features is crucial for obtaining a remarkable system accuracy

Sentinazos Automatic detection system

Feature selection/extraction

- Literature shows many feature set alternatives
- Typically, features are selected through the research experience
- There are few systematic studies related to the feature selection and its influence in the classification phase

Index

1 Sentinazos Introduction Automatic detection system

2

Ci

Feature selection Main objective Methodology Results

3 Computational requirements

4 Conclusions

Machine Learning Workhop Galicia 2016

Feature selection Main objective

- Obtaining a concise and relevant subset of features to improve and to speed up the oil spill detection systems
- The validation of systematic ways to improve the oil spill feature selection

Dark spot segmentation

- ROI: Galician coast (FTSS)
- Oil spill database composed of elements obtained via both SASEMAR aircraft missions and EMSA reports
 - 47 spillages and 45 look-alikes
- Database components were manually segmented for preserving their shape characteristics

Dark spot segmentation: oil spill examples

Conclusions

Feature selection Methodology

Dark spot segmentation: look-alike examples

Feature extraction

- Large feature vector based on a set of outstanding oil spill detection studies
 - 52 features 141 components
 - Features from 3 main categories: geometrical, textural and physical

Feature selection methods

- Preprocessing techniques within the machine learning field
- Main goals
 - Discarding the irrelevant features
 - Improving the performance of the classifiers
- Three main categories of feature selection methods
 - Filters: they make use of the general aspects of the data (i.e. entropy, correlation, etc.) to decide which subsets of features to keep
 - Wrappers: they are based on the performance of a specific prediction method to decide which subsets of features to select, usually retaining those which help improve the classifier performance
 - **Embedded methods**: they perform the feature selection stage as part of the learning process of a classifier

- Selected feature selection methods
 - Correlation-based feature selection (CFS): it selects subsets of features highly correlated with the class label but, at the same time, containing features uncorrelated with each other
 - Consistency-based filter: it measures the inconsistency of the feature subsets. A subset is inconsistent if there are at least 2 instances with the same feature values but with different class labels
 - Information Gain: it ranks all the features according to the information gain between a feature and a class
 - ReliefF: the success of this filter algorithm lies on the assumption that a good feature should be able to differentiate between samples from different classes whilst having the same value for samples from the same class
 - SVM-RFE (Recursive Feature Elimination for Support Vector Machines): embedded method that trains a SVM classifier with the whole set of features and then it discards the least important ones

14/24

- Implementation of the feature selection methods
 - Correlation-based feature selection (CFS): 8 features
 - Consistency-based filter: 6 features
 - Information Gain, ReliefF and SVM-RFE: 15 ranked features

Feature	CFS	Consistency-based filter	Information Gain	ReliefF	SVM-RFE
P/A				13	
5				6	
Sw				10	
Hu ₁	х	Х	9		
Hu ₂			10		
Asm				7	5
L/W					14
N				9	8
Rs	х	Х	1	2	1
Mr			2	1	3
Osd				4	
Crsd			12	11	
Opm			13		
Bpm			11		
Opm/Bpm			15	8	4
RISDI				3	9
RISDO			14	13	
Sc	х	Х	3	5	2
Vas					13
н				12	
EFD ₇	х	х	8		12
EFD ₁₁					11
EFD ₂₃	х	Х	6		
EFD ₂₅					15
EFD ₃₄					6
EFD ₃₇	х		4		7
EFD ₆₆					10
EFD ₆₇	х		5		
EFD ₇₉	Х	Х	7		

Training the classifier

- Support vector machine (SVM) classifier
- 48 feature vectors were checked

Feature colection method	Features	Ac	curacy (%)	Conc	Croc	Droc	16 (0()	
reature selection method		OS	LA	Total	Sens.	spec.	Piec.	λ (70)	
None	141	80.00	62.50	70.97	0.8	0.63	0.67	42.24	
CFS	8	60.0	75.00	67.74	0.6	0.75	0.69	35.15	
Consistency based filter	6	73.33	87.50	80.65	0.73	0.88	0.85	61.09	
Information Gain	5	66.67	81.25	74.19	0.67	0.81	0.77	48.12	
ReliefF	9	66.67	87.50	77.42	0.67	0.88	0.83	54.51	
SVM-RFE	6	80.00	93.75	87.1	0.8	0.94	0.92	74.06	

- Sensitivity: the classifier ability to correctly identify those dark spots that are oil spills
- Specificity: the classifier ability to correctly identify those dark spots that are look-alikes
- Precision: the proportion of the true oil spills against all the positive results
- Cohen kappa statistic (κ): it measures the agreement between the true class and the classifier class excluding the probability of agreement by chance

Feature name		Consistency-based filter	Information Gain	ReliefF	SVM-RFE
Rectangular saturation (Rs)		Х	Х	Х	Х
Smoothness contrast (Sc)		Х	Х	Х	Х
Ratio of the power to mean ratios (Opm/Bpm)			Х	Х	х
Marking ratio (Mr)			Х	Х	Х
Asymmetry (Asm)				X	X
Elliptic Fourier Descriptor (EFD ₃₄)					Х

Comparative with previous oil spill detection systems

Deference	Features	os	LA	Acc. (%)			rc (0()	Natas		
Reference	reatures			OS	LA	Total	A (70)	Notes		
SVM-RFE	6	47	45	80.00	93.75	87.1	74.06			
[Topouzelis and Psyllos, 2012]	9	34	45	Unknown	Unknown	84.4	Unknown			
[Topouzelis et al., 2009]	10	34	45	85.29	84.44	84.81	69.2	Feature selection work		
[Solberg et al., 1999]	11	71	6,980	94.37	98.92	98.88	62.41			
[Solberg et al., 2007]	13	37	12,110	78.37	99.36	99.3	40.29			
[Brekke and Solberg, 2008]	13	41	12,245	92.68	89.74	89.75	5.08			
[Fierelle et al. 2000]	14	80	43	85.00	67.44	78.86	53.01	Compound probability classifica-		
[FISCEIIa et al., 2000]	14							tion.		
				92.5	51.16	78.05	47.49	Mahalanobis classification.		
[Guo and Zhang, 2014]	50	222	863	79.27	98.07	94.12	81.39	Feature selection work. The		
								study did not use an indepen-		
								dent validation set		

Figura : The κ statistic and the number of feature vector components for the trained SVM Classifier (SVM-RFE) and the other evaluated oil spill detection systems.

Ci🔟US

 Comparative between SVM classifiers trained with different feature vector compositions and the same dataset

Poforonco	Sol mothod	Features		Acc. (%)		Sens.	Spec.	Prec.	κ (%)
Reference	Sel. methou		OS	LA	Total				
Our classifier	SVM-RFE	6	80.00	93.75	87.1	0.8	0.94	0.92	74.06
[Topouzelis et al., 2009]	Genetic algorithms	10	60.00	87.50	74.19	0.6	0.88	0.81	47.90
[Guo and Zhang, 2014]	Differential evolu-	50	66.67	68.75	67.74	0.67	0.69	0.67	35.42
	tion feature selec-								
	tion								

Index

- 1 Sentinazos Introduction Automatic detection system
- 2 Feature selection Main objective Methodology Results

Computational requirements

4 Conclusions

Machine Learning Workhop Galicia 2016

Infrastructure

Infrastructure

- Intel Core i7@3.60GHz (4 cores)
- 16GB RAM
- Candidate feature extraction cost
 - All features: 9.3 sec. (average)
 - 6-input feature vector: 2.0 sec. (average)
 - ▷ 78.49 % faster with feature selection
- Typically,a SAR image is composed of hundreds of candidates (mainly look-alikes)

Index

- 1 Sentinazos Introduction Automatic detection system
- 2 Feature selection Main objective Methodology Results
- 3 Computational requirements

Conclusions

Ci

Machine Learning Workhop Galicia 201

Conclusions

- Five feature selection methods were applied to a large feature vector
- The SVM-RFE selected an efficient combination of 6 features
 - \triangleright Accuracy of 87.1 % and κ of 74.06 %
- We obtained a concise and relevant set of features
 - \triangleright Reduction of the number of features (141 \rightarrow 6)
 - Improvement of the classifier performance
 - Reduction of the feature extraction process time (78.49 % faster)
 - Improvement of the problem knowledge
 - The proposed feature set is mainly composed of geometrical features (5/6)

References

Brekke, C. and Solberg, A. H. (2008).

Classifiers and confidence estimation for oil spill detection in envisat asar images. Geoscience and Remote Sensing Letters, IEEE, 5(1):65–69.

Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., and Trivero, P. (2000).

Oil spill detection using marine sar images.

International Journal of Remote Sensing, 21(18):3561-3566.

Guo, Y. and Zhang, H. Z. (2014).

Oil spill detection using synthetic aperture radar images and feature selection in shape space.

International Journal of Applied Earth Observation and Geoinformation, 30:146–157

Solberg, A. H. S., Brekke, C., and Husoy, P. O. (2007).

Oil Spill Detection in Radarsat and Envisat SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 45(3):746–755

Solberg, A. H. S., Storvik, G., Solberg, R., and Volden, E. (1999).

Automatic detection of oil spills in ers sar images.

Geoscience and Remote Sensing, IEEE Transactions on, 37(4):1916–1924.

Topouzelis, K. and Psyllos, A. (2012).

Oil spill feature selection and classification using decision tree forest on sar image data. ISPRS Journal of Photogrammetry and Remote Sensing, 68:135–143.

Topouzelis, K., Stathakis, D., and Karathanassi, V. (2009). Investigation of genetic algorithms contribution to feature selection for oil spill detection.

International Journal of Remote Sensing, 30(3):611-625

Thank you for your attention!

david.mera@usc.es

Machine Learning Workhop Galicia 2016